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@ Burnout is becoming a global concern throughout the world. According
to the World Health Organization (WHO), burnout is a psychological
syndrome caused by chronic stress, often resulting in emotional exhaustion,
depersonalization, and reduced accomplishment.

e Traditional tools such as the Maslach Burnout Inventory (MBI) rely on
surveys to assess these burnouts. However, these assessments often times
suffers from the following:

o high degree of subjectivity and recall bias
e inability to provide real-time monitoring
e inconsistent emotional reporting

@ This research aims to design a system that offers objective, continuous, and
non-invasive burnout measurement by using a real-time Facial Emotion
Recognition (FER) and Ekman’s Universal Emotions.

@ This project specifically uses the pre-trained TensorFlow/Keras model from
HuggingFace, called Emo0.1.h5, amongst 5 - 10 participants.
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Research Problem

Before the implementation, several considerations were guided on this project:

FER's reliability under real-time conditions (lighting, pose, duration).
@ Temporal modeling's capacity to stabilize over frame-based averaging.
o Consistent monitoring of burnout patterns across various sessions.
°

The alignment of system-derived scores with validated survey (MBI) results.

Main Problem: Can a real-time FER system produce stable, interpretable, and
survey-aligned burnout measurements?

Hypotheses
@ Hji: Temporal LSTM modeling increases correlation with MBI scores.
@ Hj: Longer facial detection sessions yield more reliable burnout estimates.

@ Hy: No significant difference exists between the system’s burnout score and
MBI survey results.
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Research Purpose

In order to achieve the goal of designing and implementing this real-time,
modular FER-based system, five primary focus were proposed accordingly,
likewise below:

@ System Architecture: Implement a real-time and continuous modular
Python-based FER pipeline.

o Temporal Model: Integrate neural networks such as CNN and LSTM to
further capture the spatial and temporal emotion patterns, which
subsequently allowing a longitudinal analysis.

@ Visual Interpretability: Provide a coherent and readable visual feedback and
communicate the stress and burnout patterns

@ Burnout Scoring: Construct a burnout scoring equation using weighted
valence and volatility.

o Data Analysis: Validate the system using MBI and PSS survey data.
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System Architecture Overview

This system specifically consists of nine interconnected modules.

@ Input layer collects real-time webcam frames for the system to process the
user’s localized facial region with its face detection.

@ The emotion classifier predicts the emotions per frame, whilst the temporal
model stabilizes these predictions over time.

@ Burnout scoring computes these burnout levels and compares its scores with
the survey integration compares results for validation.

@ These results are then displayed with the dashboard visualization and
session manager stores the session logs.
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Burnout Scoring Equation

The burnout scores combines two components for every recorded session, T.

1. Weighted Emotional Valence
o Negative (Sad, Anger, Fear, Disgust) — Positive weights («)
o Positive (Happy) — Negative weights (3)
o Baseline (Neutral, Surprise) — Arbitrary weights (7)

T
Sburnout = % Zt:l (a Ze/ENegative Pt(ei) - 6 ZejEPositive Pt(ej) + Y ZekENeutra/ Pt(ek))

2. Temporal Variability
@ Measures emotional instability across the session.

@ Higher volatility — Higher stress dysregulation and variability (V)
V= % Zz—:l(sf - Smean)2
By integrating A as a balancing operator, the burnout score is given as such:

Sfinal =X S|:>urnout + (1 - /\) -V
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Results (Quantitative Metrics)

The results for the first 5 participants were given as such:
o FER system burnout score ranges between 37.2% — 71.7%
e MBI survey burnout score ranges between 60% — 86.7%
o Its absolute difference averages within |Seegr — Swisi| = 15.2%
@ LSTM smoothing improves temporal consistency
@ FER captures moment-to-moment emotional fluctuations

@ The result matches its psychological theory as participants with:

e stronger negative emotional persistence — higher burnout scores.
e stronger positive valence — early fluctuations but followed by stabilization.

Table 1. FER Burnout System Session Based Quantitative Metrics

Participant Avg.SystemBurnout  Min  Max  Std.Dev  SurveyBurnout [System-Survey| .
user001 0.400 0340 0780 0090 0600 0200 i
user002 0372 0340 0640 0043 0600 0228 H
user003 orm 0650 0750 0021 0733 0016 Sos
user004 o714 os0 070 0015 0887 0153 :
user005 0706 0690 0720 0006 0867 0161

Mean £ SD 058210179 - - - 073340134 01520082 o]
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Correlation & Validation

In order to further validate the system, a statistical analysis such as the Pearson’s
correlation coefficient between the FER burnout scores and the MBI survey
results were calculated, where:

YL =X Y)
V(X = X)2 /S, (Y - V)2

Where:
@ X; = FER System-derived burnout score for session i,
@ Y; = MBI Standardized survey burnout score for session i,

e X, Y = Means of each score distribution.

By substituting the FER and MBI burnout scores, the result is shown as such:
@ Pearson’s correlation coefficient: r = 0.904.
@ Strong positive alignment between the FER burnout and MBI survey scores.

@ Supports the hypotheses, H; and H,, as temporal modeling improves and
longer sessions produces more accurate and reliable scores respectively.
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Conclusion & Future Work

Conclusion:

@ FER based system effectively detects prolonged stress and burnout in real
time whilst predicting the user's upcoming burnout level.

@ Strong alignment with the MBI survey results (r = 0.904).
@ Temporal consistency validates the psychological burnout dynamics.
o Non-invasive, scalable, and suitable for continuous monitoring.
Future Work:
@ Multimodal inputs (speech, heart rate, EEG) — inclusion of external factors.
@ Transformer-based temporal models

@ Larger and more diverse datasets — current dataset may have limited
inclusion of race, ethnicity and age to emotion change difference.

@ Improve frame-rate performance with the inclusion of GPU acceleration.

Ultimately, this research delivers a real-time FER based framework that
contributes to the overlapping fields between Al, medicine and psychology.
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